Hydrogen tetrachloroaurate(III) hydrate

sc-250067

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Hydrogen tetrachloroaurate(III) hydrate

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY:
ChemWatch
Within the US & Canada: 877-715-9305
Outside the US & Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
Laboratory reagent; source of soluble gold salts.

SYNONYMS
HAuCl4.xH2O, "auric acid", "brown gold chloride", "chlorauric acid", "chloroauric acid anhydrous", "gold trichloride hydrochloride", "hydrogen tetrachloroaurate(1-)", "hydrogen tetrachloraurate (III)", "tetrachloroauric acid"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS
EMERGENCY OVERVIEW

RISK
Causes burns.
Risk of serious damage to eyes.
May cause SENSITISATION by skin contact.
Toxic: danger of serious damage to health by prolonged exposure if swallowed.
Very toxic by inhalation and in contact with skin.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
■ The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.
■ Ingestion of acidic corrosives may produce burns around and in the mouth, the throat and esophagus.
■ The material is not thought to produce adverse health effects following ingestion (as classified using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum.

EYE
■ The material can produce chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
■ If applied to the eyes, this material causes severe eye damage.
■ Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns. Mild burns of the epithelia generally recover rapidly and completely.

SKIN
■ Skin contact with the material may produce severely toxic effects; systemic effects may result following absorption and these may be fatal.
■ The material can produce chemical burns following direct contact with the skin.
■ Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.
■ Open cuts, abraded or irritated skin should not be exposed to this material.
■ Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
■ Inhalation of dusts, generated by the material, during the course of normal handling, may produce severely toxic effects; these may be fatal.
■ The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
■ Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness.
■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
■ Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.

CHRONIC HEALTH EFFECTS
■ Toxic: danger of serious damage to health by prolonged exposure if swallowed.
This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.
Intramuscular administration of gold salts for rheumatoid arthritis can cause poisoning; the symptoms include dermatitis, nausea and vomiting, diarrhea, inflamed kidneys, inflamed nerves of the extremities, hepatitis and brain infection. Gold accumulates in the body and is largely not removed.
Skin disruptions following contact with gold or its compounds (for example in treating rheumatoid arthritis) are characterized as chronic eruption of spots, redness, and sloughing. There may be swelling of the face and ankle, a red rash around the mouth and generalized red patches.
Section 4 - FIRST AID MEASURES

SWALLOWED
- For advice, contact a Poisons Information Center or a doctor at once. · Urgent hospital treatment is likely to be needed.

EYE
- If this product comes in contact with the eyes: · Immediately hold eyelids apart and flush the eye continuously with running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN
- If skin or hair contact occurs: · Immediately flush body and clothes with large amounts of water, using safety shower if available. · Quickly remove all contaminated clothing, including footwear.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested. Inhalation of vapors or aerosols (mists, fumes) may cause lung edema. Corrosive substances may cause lung damage (e.g. <\p>.

NOTES TO PHYSICIAN
- Most of the toxic effects arising from gold therapy may be effectively treated with injections of dimercaptol or penicillamine may be given by mouth. Skin disorders may require topical or systemic corticosteroid therapy.
- For acute or short term repeated exposures to strong acids:
 - Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
 - Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Vapour Pressure (mmHG):</th>
<th>Not available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Explosive Limit (%):</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Specific Gravity (water=1):</td>
<td>3.9</td>
</tr>
<tr>
<td>Lower Explosive Limit (%):</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
- Water spray or fog.
- Foam.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 800 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Non combustible.
- Not considered to be a significant fire risk.
- Decomposition may produce toxic fumes of: hydrogen chloride, metal oxides.

FIRE INCOMPATIBILITY
- None known.

PERSONAL PROTECTION
- **Glasses:**
 - Safety Glasses.
- **Full face- shield.**
- **Gloves:**
- **Respirator:**
 - Acid vapour Type B cartridge/ canister.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.

MAJOR SPILLS
- Clear area of personnel and move upwind.
· Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
· Avoid all personal contact, including inhalation.
· Wear protective clothing when risk of exposure occurs.

RECOMMENDED STORAGE METHODS
- DO NOT use aluminum or galvanized containers.
- Check regularly for spills and leaks.
- Glass container.
- Lined metal can, Lined metal pail/drum
- Plastic pail.
- For low viscosity materials
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

STORAGE REQUIREMENTS
· Store in original containers.
· Keep containers securely sealed.
· Store away from light and moisture.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US - California Permissible Exposure Limits for Chemical Contaminants</td>
<td>chloroauric acid (Particulates not otherwise regulated Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(n)</td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>chloroauric acid (Particulates not otherwise regulated Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants</td>
<td>chloroauric acid (Particulates not otherwise regulated PNOR)(f)-Respirable fraction</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Michigan Exposure Limits for Air Contaminants</td>
<td>chloroauric acid (Particulates not otherwise regulated, Respirable dust)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Prince Edward Island Occupational Exposure Limits</td>
<td>chloroauric acid (Particles (Insoluble or Poorly Soluble) [NOS] Inhala</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See Appendix B current TLV/BEI Book</td>
</tr>
</tbody>
</table>

PERSONAL PROTECTION
RESPIRATOR
BR4
Consult your EHS staff for recommendations

EYE
・ Chemical goggles.
・ Full face shield.

HANDS/FEET
■ Elbow length PVC gloves.
NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
・ frequency and duration of contact,
・ chemical resistance of glove material,
・ glove thickness and
dexterity
Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
・ When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
・ When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
・ Contaminated gloves should be replaced.
Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER
・ Overalls.
・ PVC Apron.

ENGINEERING CONTROLS
■ Local exhaust ventilation usually required. If risk of overexposure exists, wear an approved respirator.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES
Mixes with water.
Corrosive.
Acid.
Toxic or noxious vapours/gas.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>DIVIDED SOLID</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>339.79</td>
</tr>
<tr>
<td>Melting Range (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Not available</td>
</tr>
</tbody>
</table>

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
・ Contact with alkaline material liberates heat.
・ Presence of incompatible materials.
Product is considered stable.

STORAGE INCOMPATIBILITY
- For gold salts:
 - The action of ammonia or ammonium salts on gold salts under a wide range of conditions gives fulminating gold which is a compound of uncertain composition but containing gold-nitrogen bonds - these materials are heat-, friction-, and impact sensitive, and explosive when dry.
 - Supported metal catalysts containing gold should never be prepared by impregnation of the support using solutions that contain gold and ammonia. Catalysts supported in such a manner contain extremely sensitive gold-nitrogen compounds which, when dry, may explode at a light touch.
 - the action of ammonium salts on gold salts under a wide range of conditions gives fulminating gold which is a compound of uncertain composition containing gold-nitrogen bonds - this material is heat-, friction-, and impact sensitive, and explosive when dry.
 - Many gold compounds exhibit a tendency to decompose violently with separation of the metal.
 - Inorganic acids are generally soluble in water with the release of hydrogen ions. The resulting solutions have pHs of less than 7.0.
 - Inorganic acids neutralize chemical bases (for example: amines and inorganic hydroxides) to form salts.
 - WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.
 - The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono- or poly-fluorobenzene show extreme sensitivity to heat and are explosive.
 - Avoid reaction with borohydrides or cyanoborohydrides.
 - Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride.
 - These trifluorides are hypergolic oxidisers. They ignite on contact (without external source of heat or ignition) with recognised fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition.
 - The state of subdivision may affect the results.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

TOXICITY AND IRRITATION

CHLOROAURIC ACID

- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.
- Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quinecke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

This material and its container must be disposed of as hazardous waste.

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

- Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
Recycling
Disposal (if all else fails)
This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.
DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
Recycle wherever possible.
Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
Catalysts and expensive metals should be recovered for reuse or recycling.

Section 14 - TRANSPORTATION INFORMATION

DOT:
Symbols: None Hazard class or Division: 8
Identification Numbers: UN3260 PG: II
Label Codes: 8 Special provisions: IB8, IP2, IP4, T3, TP33
Packaging: Exceptions: 154 Packaging: Non-bulk: 212
Packaging: Exceptions: 154 Quantity limitations: 15 kg
Passenger aircraft/rail:
Quantity Limitations: Cargo 50 kg Vessel stowage: Location: B aircraft only:
Vessel stowage: Other: None
Hazardous materials descriptions and proper shipping names:
Corrosive solid, acidic, inorganic, n.o.s.
Air Transport IATA:
ICAO/IATA Class: 8 ICAO/IATA Subrisk: None
UN/ID Number: 3260 Packing Group: II
Special provisions: A3
Cargo Only
Packing Instructions: 816 Maximum Qty/Pack: 50 kg
Passenger and Cargo Passenger and Cargo
Packing Instructions: 814 Maximum Qty/Pack: 15 kg
Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity
Packing Instructions: Y814 Maximum Qty/Pack: 5 kg
Shipping Name: CORROSIVE SOLID, ACIDIC, INORGANIC, N.O.S.
*(CONTAINS CHLOROAURIC ACID)

Maritime Transport IMDG:
IMDG Class: 8 IMDG Subrisk: None
UN Number: 3260 Packing Group: II
EMS Number: F-A, S-B Special provisions: 274
Limited Quantities: 1 kg
Shipping Name: CORROSIVE SOLID, ACIDIC, INORGANIC, N.O.S.

Section 15 - REGULATORY INFORMATION

chloroauric acid (CAS: 27988-77-8, 16961-25-4) is found on the following regulatory lists;
"Canada Domestic Substances List (DSL),"Canada Ingredient Disclosure List (SOR/88-64),"Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English),"US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

Ingredients with multiple CAS Nos
Ingredient Name CAS chloroauric acid 27988-77-8, 16961-25-4

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use.
For additional technical information please call our toxicology department on +800 CHEMCALL.
Classifications of the preparation and its individual components have drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
A list of reference resources used to assist the committee may be found at:
www.chemwatch.net/references.
The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the
reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jan-29-2009
Print Date: Dec-8-2010